基坑变形监测技术方案

发布 2019-05-28 14:48:35 阅读 5774

一、 工程概况。

本工程由一幢门字形酒店、六幢不同高度公寓和整体地下车库组成,总占地面积约30000m2,总建筑面积约23万m2,地下建筑面积约8.7万m2。

本工程基坑总面积约29300m2,东西向长约300~400m,南北方向长约40~110m。基坑总延长线为785m,地下室为三层,基坑开挖深度为-18.2m、-18.

7m,管线分布复杂。基坑北侧紧邻海河,南侧是车流量较大的公路,海河水位的变化及张自忠路面动荷载的干扰都将是某基坑监测的难点。基坑监测等级为一级,监测手段众多,监测内容、监测工作量及监测难度均较大。

二、 依据及原则。

1. 《建筑变形测量规程》(jgj/t8-97)

2. 《工程测量规范》(gb50026-93)

3. 《建筑基坑支护技术规程》jgj120-99

4. 《国家。

一、二等水准测量规范》(gb12897-93)

5. 《天津市建筑地基基础设计规范》(tbj1-88)

依据规范和天津市建设主管部门对建筑物基坑施工相关文件的要求,以及基坑设计的相关要求;为确保建筑物地下基坑施工及周边环境的安全性和可靠性,使在基坑开挖和施工期间的变形得到有效控制,保证其不对基坑自身及周边环境造成破坏性的影响,用科学的数据指导基坑信息化施工,保证施工安全。

三、基坑监测项目。

为了及时收集、反馈和分析周围环境要素在施工中的变形信息,实现信息化施工并确保施工安全,综合本工程周边环境状况及围护结构和支护体系的特点,遵照设计的相关要求,本工程共进行如下几项基坑监测工作:

1、周边环境监测。

a、地下管线变形监测;

b、基坑外道路变形监测;

c、基坑外地下潜水水位监测;

d、基坑外承压水水位监测;

e、基坑外土体水平位移(测斜)监测;

f、基坑外土体表面变形监测;

g、海河堤岸变形(沉降、变形)监测;

2、围护结构监测。

a、围护桩桩体水平位移(测斜)监测;

b、围护桩桩顶变形(沉降、位移)监测;

c、围护桩内、外侧水土压力监测;

d、围护桩的竖向钢筋应力监测;

3、支撑体系和立柱监测。

a、支撑轴力监测;

b、钢格构柱及立柱角钢应力监测;

c、立柱位移和沉降监测;

4、其它监测。

a、基坑开挖过程中土体分层沉降监测;

四、基坑监测点位布置。

1、周边环境监测。

a、地下管线、路面等的变形监测。

包括基坑周边的张自忠路、兴安路的地下管线、路面、海河堤岸的沉降监测点的布设。管线和路面每间隔30米布设一个监测断面,共约239个监测点。其中海河堤岸监测点编号为hd1~hd10,而地面沉降监测点共105个,布点数量较多,最终编号以实地布设完点位后的编号为准(详细点位见附后“地面及海河堤岸监测点位示意图)。

供电管线沉降监测点编号为gd1~gd10;路灯管线沉降监测点编号为ld1~ld10;电信管线沉降监测点编号为dx1~dx25(电力管线监测点详细点位见附后“电力管线沉降监测点位示意图”)。输水管线沉降监测点编号为ss1~ss15;污水管线沉降监测点编号为ws1~ws7;雨水管线沉降监测点编号为ys1~ys15(雨污水管线监测点详细点位见附后“输排水管线沉降监测点位示意图”)。煤气管线沉降监测点编号为mq1~mq40(煤气管线监测点详细点位见附后“煤气管线沉降监测点位示意图”)。

沉降监测点的布设采用铆钉嵌入法布设(如图一),首先在设点处用电钻打出φ12直径的圆孔,深度约10cm左右,再将专用圆铆钉牢固地嵌入孔中,圆帽的下边缘与地面齐平。圆铆钉的顶部圆帽适用于水准测量,顶部的强制归心孔适用于海河堤岸水平位移观测。

重要地下管线主要包括三条煤气管线,分别为dn529、dn325和dn219。其监测点的布设首先用雷迪4000管线探测仪(如右图)测定出地下管线的平面位置和埋深,再用电钻在垂直于管线的路面上打孔,嵌入圆铆钉,其它管线利用“地下综合管线探测图”结合实地位置进行布点,埋设标志方法同上。在基坑周边绿地内或未硬化路面中有重要压力管线的,采取直接布点法,将观测标志设置在监测管线的管壁上。

b、地下水位监测。

地下水位观测包括基坑外的潜水和承压水水位监测,水位观测井反映的是基坑开挖过程中基坑外侧的水位变化情况。共计设置15口潜水水位观测井,编号sw01~sw15;设置9口承压水观测井,编号cy01~cy09(观测井的详细位置及编号见附后“基坑外水位监测井位置图”)。根据《某岩土工程详细勘察报告》所述,某场地潜水含水岩组埋深约16米,初见水位埋深约3.

1~4.3米,静止水位埋深约2.5~3.

2米。故水位观测井布设时首先用钻探机在设计位置钻φ150mm的孔,孔深为15米。将专用pvc水位管(左图)下端封堵好后,底端用电钻打上一些小孔,并填入粗砂或包上土工布用来渗水并防止泥浆的灌入。

往钻探孔中一边下水位管,一边用套管接头将pvc水位管一节节的连接上,同时用胶带密封。全部水位管下完后在管中灌入清水,最后用细砂及回填土填满水位管外围的孔隙。

根据《某岩土工程详细勘察报告》所述,某场地承压含水岩组第一承压含水层为更新统第五组陆相冲积层上部粉土(力学分层号为7a),位置深约在大沽高-15~-21米之间,实际埋深约为18~25米。为保证基坑止水工作的安全,防止承压水头外涌,在公寓a和公寓b附近各设置1口⑧b层承压水观测井,埋设深底为35米。其它7口为⑦a层承压水观测井,埋设深度为22米。

水位管的埋设方法同潜水水位监测井的埋设,但需对管体接口进行有效的密封。

c、基坑外土体变形监测。

土体变形监测包括土体表面的沉降监测以及深层土体水平位移(测斜)监测。测点与围护体的水平位移监测点有所对应,坑外土体共设置14个监测点t01~t14(详细点位见附后“支护结构监测点位示意图”)。

其埋设方法是在坑外土体中钻φ150mm的钻探孔,考虑到测斜管的埋设深度应不会造成深层承压水与地下潜层水的连通,土体测斜管实际埋设深度为35米。首先将测斜管下端封堵好后,一边往钻探孔中下一边将测斜管用套管接头一节节的连上,同时用胶带密封并灌入清水。全部下入后用细砂及回填土填满管周围的孔隙。

测斜管材料为pvc硬塑,内有定向槽,管径70毫米(左图)。测斜管顶部加套一米长的φ80mm的硬塑管进行保护,并做醒目标志,防止施工过程中的意外破坏(如图四)。

2、围护结构的监测。

a、灌注桩桩身水平位移(测斜)硬件埋设。

依据设计图纸某基坑共计埋设灌注桩桩身倾斜监测孔25处,埋设深度30米,其监测孔的布设方法如图一所示。在测斜管安装时应注意,对接两根管子时要对好管壁内侧的导向槽,接头处用封口胶带和螺丝固定,外面缠上胶带,以防止污水或砂浆从管子接头处渗入。管顶、管底用专用封堵帽,防止异物进入管道造成堵塞。

用铁丝将测斜管固定在钢筋笼背向基坑的一侧或中间部位,以防止基坑开挖后,平整围护桩内壁时损坏管道,同时应保证测斜管导槽与基坑开挖面在水平方向的垂直性。当测斜管随同钢筋笼下入挖好的槽孔中后,应及时向管内注入清水,以减轻测斜管承受的外界水压和混凝土的压力。在砼浇筑时, 测斜管最上部一米范围要加φ150mm塑料保护套管,防止管壁在剔桩头作帽粱时被破坏。

b、灌注桩内、外侧水土压力硬件埋设。

依据设计要求,在不同区域的灌注桩内、外侧共计设置4组水土压力监测点,每组设置5个观测断面,每个断面皆进行水土压力监测,其中3个断面还要进行坑内水土压力监测。每个测点布置1个测试元件,即一组监测点包括8个水压力计和8个土压力计,4组共计64个监测元件。本工程围护体孔隙水压力及土压力计的硬件埋设采用挂布法,挂布选用土工布,要求透水性能好,但不允许渗透水泥浆。

预先在挂布上按设计要求深度固定好传感器,受压膜放在挂布向外直接面向土体的方向,将挂布包裹在钢筋笼上,挂布接缝处搭边约20cm,并将接缝紧密连接固定。在吊装安放时,现场安装人员应注意避免硬件和电缆与钻孔上边缘的刮碰,以免硬件的损坏,最上部一米范围要加φ150mm塑料保护套管保护电缆。最后利用混凝土浇捣时的外挤力,将挂布及传感器受压膜紧贴于桩体外侧土面上,完成传感器的安装。

c、灌注桩内、外侧竖向钢筋应力硬件埋设。

围护体的竖向钢筋应力监测可直接反映开挖过程中地下围护结构的受力情况,本工程共设置6组观测点,每组5个断面,每个断面共布置内外侧测试元件各2个,即每组测点包括20个,共计120个钢筋应力计。

在安装前应按待测钢筋直径选配相应规格的钢筋计,并根据下件的埋深选择适当的电缆长度。安装时将钢筋计并置在待测钢筋旁并用铁丝固定。将电缆线**在钢筋内侧引出至围护桩顶外部不会被混凝土掩埋的地方并加装φ150mm塑料保护套管,防止破坏。

在**完成后,随钢筋笼一起吊装即可。

3、支撑体系和立柱监测。

a、支撑轴力监测。

在支撑的主要受力杆件上布置轴力监测点,第一道支撑上设置测点24个(如右图),第。

二、三道支撑各设置42个测点,三道支撑共108个测点,实际轴力监测点位根据支撑的最终布设形式来确定。编号方式为“支撑层数+位置+钢筋计自身编号”,例如:第二道撑,3号位置处的钢筋计编号为c2-zl3-**每一测点处在混凝土支撑内钢筋茏子两侧的主筋上各安置一个钢筋应力计。

安置器件时左右两个钢筋计应尽量对称,监测时两侧钢筋计的数据才能够更好的进行对比和分析。

安装时根据器件的位置、埋深选择适当的电缆长度,将钢筋计并置在待测钢筋旁并用铁丝固定。将电缆线**在钢筋上并引出至支撑外部不会被混凝土掩埋的地方并加装保护套管,防止破坏(详细位置见“支撑轴力测点位置示意图”)。

b、钢格构柱及立柱角钢应力监测。

在支撑竖向荷载比较大和典型的位置布设钢立柱角钢应力监测点,依据设计要求共设置11个钢格构柱表面应变计(如右图),测点编号为jy1~jy11(角钢应力监测详细点位图见附后“立柱桩及角钢应力监测点位示意图”),实际监测点位根据钢格柱及立柱桩的最终位置确定。安装时将应变计两端直接焊在或用螺钉固定在监测部位,并将读数电缆线引至安全地点并加以保护。

c、钢立柱位移和沉降监测。

与钢立柱的角钢应力监测点有所对应,同时进行钢立柱的位移和沉降监测,测点数量为38个监测点,测点编号为lz1~lz38(立柱桩位移和沉降监测详细点位图见附后“立柱桩及角钢应力监测点位示意图”)。由于立柱桩在基坑开挖后的状态是悬空的,所以测点处无法上人架设棱镜和水准标尺,所以位移监测采用坐标法,沉降监测采用三角高程法。为了安全起见,点位标志设置的是全站仪贴片,该贴片是仿棱镜设计,有精确的高反光性,可以代替全站仪的专用反光棱镜。

在钢立柱出露并有布点条件时,将全站仪贴片用胶水沾在钢立柱表面设计位置即可。

环境现状监测方案 含地下水监测方案

铁选厂环境现状监测方案。一 大气环境质量现状监测。1 监测因子 pm10 tsp 2 监测布点 项目 庄子 村各设一个监测点,见表1及图1。3 监测频率 连续监测7天,pm10 tsp日均浓度每天连续采样12小时 4 监测方法 按照 环境空气质量标准 gb3095 1996 中规定的方法进行。表1 ...

安徽省重点职业病监测技术方案

通过开展重点职业病监测工作,不断提高早期发现 早期预防 早期控制重点职业病的能力,提高职业病防治监管效率,及时掌握重点职业病的发病特点 规律和趋势,研究制订适宜技术,遏制重点职业病的高发势头,有效保护劳动者健康。一 目的。职业病监测是指对接触重点职业病危害因素的人群,按照 职业健康监护管理办法 卫生...

基坑围护施工方案

国家电器产品监督检验中心南区一标工程。基坑土方及护坡施工方案。为确保国家电器产品监督检验中心南区一标工程基坑围护施工组织与管理的科学性和合理性,以及优质 高速 文明 安全地完成该工程的施工任务,在充分理解设计意图 分析工程特点 了解场地周边情况的前提下,组织编制了本 国家电器产品监督检验中心南区一标...

变形缝施工方案

大西南 防城港 临港工业园供水工程。编制 审核 审批 广西建工集团第一安装 年月。目录。第一节 编制依据1 第二节 工程概况1 第三节 材料准备1 第四节 主要施工方法2 第五节施工要求7 第六节质量 安全 消防控制措施4 第一节工程概况。该工程为本工程为大西南 防城港 临港工业园供水工程,位于广西...

变形缝安装施工方案

一 工程概况。首都国际机场新航站楼工程,在士0.00以上设计有变形缝10条,分布在 80及南北指廊的m n和b1 c1轴线间。变形缝做法包括首层外墙墙面 室外抗风压吊顶 室内金属墙面 室内涂料墙面 室内吊顶 二层和三层地面 平屋面和屋面高低跨。另外,在新航站楼西侧与一号桥交界处还有一条室外抗风压吊顶...

土方开挖及基坑支护方案及安全措施

一 工程概况。总建筑面积为17309.88m2,为框架结构,建筑层数为地上九层,地下一层,高度为36.3m,基础为桩基础,由承建,开工日期为2011年3月1日,计划竣工日期为2011年11月31日。二 编制依据。1 本工程的施工图纸及地勘报告。2 建筑边坡工程技术规范gb50330 2002 3 建...

深基坑开挖专项施工方案 专家论证

第一章工程概况4 一 工程概述4 二 工程地质 水文地质及周边环境4 三 施工场地条件6 第二章基坑边坡稳定性验算书7 一 基坑简介7 二 计算依据7 三 力学验算法的基本假定7 四 判断标准8 五 验算过程8 第三章施工部署12 第四章施工准备14 一 技术准备14 二 组织结构14 第五章土方施...

污水管道深基坑开挖专项施工方案 secret

一 编制依据。我公司依据与xx工业园区xx水务 签订的该标段污水管。道工程的施工合同和建设施工安全目标责任书,结合我公司编制的星塘街三标段工程总体施工组织设计和施工现场的实际情况,以及本公司过去的施工经验,参照该工程排水施工图设计和有关图集编写。该施工方案。参照的有关图集 规范分别为 xx市政工程排...