小学奥数技巧 03 解几何题技巧

发布 2019-08-06 08:37:55 阅读 5165

(三)解几何题技巧。

1.等分图形。

【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。

例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图(4.12)中正方形的面积。

由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角形有什么样的关系。等分后的情况见图4.13和图4.14。

积是。图4.12的正方形面积是。

【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整体上去观察,往往也能使问题获得解决。

例如图4.15,在正方形abcd中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些?

大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图4.16,经过等分,正方形甲的面积等于△abc面积的一半;正方形丙的面积等于△edf的一半,正方形乙的面积等于梯形acfe面积的一半。

这样,一个大正方形abcd,就划分成了三个局部:等腰直角△abc;等腰梯形acfe;等腰直角△edf。其中甲、乙、丙的面积分别为各自所在图形的一半,而△edf的面积加梯形acfe的面积等于△adc的面积,即等于△abc的面积。

所以,乙、丙面积之和等于甲的面积。

2.平移变换。

【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。

例如,下面的两个图形(图4.17和图4.18)的周长是否相等?

单凭眼睛观察,似乎图4.18的周长比图4.17的要长一些。

但把有关线段平移以后,图4.18就变成了图4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。

于是,不难发现两图周长是相等的。

【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法,往往能化难为易,很快使问题求得解答。例如,计算图4.20中阴影部分的面积。

圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图4.

20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所有的阴影部分便构成一个正方形了(如图4.21)。所以,阴影部分的面积很快就可求得为5×5=25。

又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图4.22)。

这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略)

3.旋转变换。

【旋转成定角】例如下面的题目:

“在图4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

按一般方法,先求大、小正方形的面积,再求它们的差,显然是有难度的。若将小正方形围绕圆心旋转45°,使原图变成图4.24,容易发现,小正方形的面积为大正方形面积的一半。

所以,大正方形面积比小正方形的面积大。

=128(平方厘米)

又如,如图4.25,求正方形内阴影部分的面积。(单位:厘米)

表面上看,题目也是很难解答的。但只要将两个卵叶片形的阴影部分绕正方形的中心,分别按顺时针和逆时针方向旋转90°,就得到了一个由阴影部分组成的半圆(如图4.26),于是,阴影部分的面积就很容易解答出来了。

(解答略)

【开扇式旋转】有些图形相互交错,增加了解答的难度。若像打开折扇一样,绕着某个定点作“开扇式”旋转,往往会使人顿开茅塞,使问题很快获得解决。例如,求图4.

27的阴影部分的面积(单位:厘米)。若采用正方形面积减空白部分面积的求法,计算量是很大的。

由于它是由两个形状相同的扇形交叉重叠而成的,我们不妨把右下部的扇形打开,顺时针方向旋转90°,得到图4.28;再继续旋转,得到图4.29。

在图4.29中,阴影部分面积便是半圆面积减三角形面积的差。所以,阴影部分面积是。

=9.12(平方厘米)

又如,求图4.30阴影部分的面积(单位:厘米)。

将这个图从中间剪开,以o为旋转中心,将右半部分按顺时针方向转到左半部下方,便变成了图4.31。于是,阴影部分的面积便是半圆面积减去两直角边均为2厘米的一个空白等腰直角三角形面积的差。

即。=4.28(平方厘米)

4.对称变换。

【将军饮马】据说古代希腊有一位将军向当时的大学者海伦请教一个问题:从a地出发到河边饮马,再到b地(如图4.32所示),走什么样的路最近?如何确定饮马的地点?

海伦的方法是这样的:如图4.33,设l为河,作ao⊥l交l于o点,延长ao至a',使a'o=ao。

连结a'b,交l于c,则c点就是所要求的饮马地点。再连结ac,则路程(ac+cb)为最短的路程。

为什么呢?因为a'是a点关于l的对称点,ac与a'c是相等的。而a'b是一条线段,所以a'b是连结a'、b这两点间的所有线中,最短的一条,所以ac+cb=a'c+cb=a'b也是最短的一条路了。

这就是海伦运用对称变换,找到的一种最巧妙的解题方法。运用这种办法,可以巧妙地解决许多几何问题。

【划线均分】通过中心对称图形的对称中心,任意画一条直线,都可以把原图形均分成两个大小、形状完全相同的图形。利用这一性质,可以使某些较复杂的问题迅速地解答出来。例如。

(1)把图形(图4.34)的面积,用一条直线分成相等的两个部分。

解题时,只要把这个图形看成是由两个矩形(长方形)组成的组合图形,而矩形既是轴对称图形,也是中心对称图形, 所以只要找出两个对称中心(对角线交点),利用中心对称图形的上述性质,通过两个对称中心作一条直线,就能把它的面积分成相等的两个部分了。如前页的三种分法都行(如图4.35所示)。

(2)如图4.36,长方形abcd内有一个以o点为圆心的圆,请画一条直线,同时将长方形和圆分为面积相等的两个部分。

大家知道,长方形和圆都既是轴对称图形,又是中心对称图形。长方形的对称中心是对角线的交点,圆的对称中心是它的圆心。

根据中心对称图形的上述性质,先找出这两个对称中心o点和p点(如图4.37),再过o、p作直线l,此直线l即是所画的那根直线。

5.割补、拼接、截割。

【割补】在数学中,把图形的某个部分割下,补到某一个新的位置,往往可以使新的图形,更便于发现数量关系,从而较快地解答出数学题目。

例如,在图4.38中,三个圆的面积都是12.56平方厘米,且三个圆两两相交,三个交点都是圆心,求三块阴影部分的面积。

从表面上看,题目是无法解答的。但只要仔细观察就能发现,根据轴对称性及割补方法,题目可作如下的解答:

如图4.39,将图形1翻折到图形2的位置;再将图形3和4割下来,合并在一起,补到图形5的位置上。于是,原来的阴影部分就正好拼成了一个半圆。

所以,三块阴影部分的面积是12.56÷2=6.28(平方厘米)

【拼接,截割】

(1)平面图形的拼接、截割。

拼接和截割,是两个相反的过程。平面图形的拼接是把两个或两个以上的图形拼接在一起;平面图形的截割,是把一个图形截割成两个或两个以上的图形。

平面几何图形拼接或截割以后,面积和周长的变化有以下规律:

①两个或两个以上的图形拼接成一个新的几何图形,它的面积等于原来若干个几何图形的面积之和;而周长却会比原图形周长之和要短。如果拼接部分的总长度为a,那么拼接后减少的周长就是2a。

②把一个平面几何图形截割以后,各小块图形的面积之和,等于原图形的面积;但截割后各小块几何图形的周长之和,要比原图形的周长要长。若所有截割部分长度为a,那么截割后增加的长度就是2a。

依据这一规律,可快速地解答一些几何问题。例如,如图4.40,正方形被均分为大小、形状完全相同的三个长方形,每个长方形周长都是48厘米,求正方形的周长。

解题时,可以把大正方形看成是三个小长方形拼接而成的,三个小长方形的拼接部分,都是小长方形的长,长度等于大正方形的“边长”。拼接以后的图形(大正方形)的周长,比原来的三个小长方形的周长之和,要减少4个“边长”,而这4个“边长”正好相当于大正方形的周长。这就是说,三个小长方形的周长之和里,刚好包含有两个大正方形的周长。

所以,正方形的周长是。

=72(厘米)

(2)立体图形的拼接、截割。立体几何图形拼接或截割以后,它的体积和表面积的变化,有以下规律:

①两个或两个以上的几何体,拼接成一个新几何体以后,它的体积等于原来若干个几何体体积之和;但是它的表面积却比原来若干个几何体的表面积之和要小。如果重叠部分为s,那么减少的面积就是2s。

②把一个几何体截割以后,各部分的体积之和等于原几何体体积;但截割后的表面积之和,却大于原几何体的表面积。如果其中的截割面积为s,那么,增加的表而积就是2s。

依据这一规律,可以较快地解答出某些题目。例如,如图4.41,把一个棱长为5厘米的正方体木块锯成两个形状大小完全相同的长方体(不计损耗),表面积会增加多少平方厘米?

因为正方体木块的截割面积为5×5=25(平方厘米),依据上面的规律可知,表面积会增加。

25×2=50(平方厘米)

又如,把长10厘米、宽6厘米、高5厘米的长方体木块截成形状、大小相同的两个长方体,表面会增加多少平方厘米?

由于此题未交代从何处下手截割,所以要分三种情况来解答题目。

①如图4.42左图的截法,表面积会增加。

5×6×2=30×2=60(平方厘米)

②如图4.42中图的截法,表面积会增加。

10×6×2=60×2=12(平方厘米)

③如图4.42右图的截法,表面积会增加。

10×5×2=50×2=100(平方厘米)

6.扩缩图形。

【扩图】 解题时,将几何图形扩大,有时候能使一时难以解决的问题变得非常简单。