水表的结构和工作原理

发布 2019-04-27 03:30:35 阅读 4849

旋翼式水表是速度式水表的一种,是世界上用得最多的水表品种。

在国家标准中,速度式水表的定义为“安装在封闭管道中,由一个动力元件组成,并由水流速直接使其获得运动的一种水表”。当水流通过水表时,驱动叶轮(旋翼或螺翼)旋转,而水流的流速与叶轮的转速成正比,因水流驱动叶轮处喷口的截面积为常数,故叶轮的转速与流量也成正比。通过叶轮轴上的联动部件与计数机构相连接,使计数机构累积叶轮(旋翼或螺翼)的转数,从而记下通过水表的水量。

多流(束)水表:水流通过水表时,有多束(股)水流从叶轮盒四周流人,驱动叶轮旋转。这种水表的公称口径一般为15mm~150mm。

旋翼多流束式水表由表壳、中罩、表玻璃、密封垫圈、计量机构、计数机构和滤水网等组成。水流冲击叶轮后,叶轮开始转动,所转圈数通过计数机构累计,记录显示通过水表的水量。见图2-1和2-2。

图2-l 旋翼多流束水表的结构示意图。

1-接管;2-连接螺母;3-接管密封垫圈;4-铅封;5-铜丝;6-销子;7-o形密封垫圈;

8-叶轮计量机构;9-罩子;10-盖子;11-罩子衬垫;12-表壳;1-碗状滤丝网。

图2—2 旋翼多流束水表的结构展开图。

1-表盖;2-轴销;3-铜罩;4-罩子衬垫;5-表玻璃;6-o形密封圈;7-计数器;8-防磁环;9-中心齿轮,10-齿轮盒;11-垫圈;12-磁钢座;13-叶轮;14-叶轮盒;15-表壳;16-调节螺钉;17-调节螺钉垫片;18-调节塞;19-滤水网;20-接管垫片;21-接管;22-连接螺母。

多流束水表的总体尺寸和连接方式见表2—1。

表2—ⅱ 旋翼式多流束水表的总体尺寸和连接方式 mm

各部件的作用、所用材料如下:

表壳、中罩、表玻璃和密封垫圈一起组成一密封体,使表壳内被测水不致渗漏至表外。按国家标准规定,水表应能承受水压1.6mpa、持续15min和水压2.

0mpa、持续1min的压力试验。因此,表壳、中罩和表玻璃均应满足上述要求。

表壳材料一般采用灰铸铁(htl50,见gb9436—1988)或铸造铅黄铜(zcuzn40pb2,见gbll76—1987)。中罩材料一般采用铸造铅黄铜(zcuzn40pb2,见gb1176—1987)。表玻璃应采用符合jb/t8480—1996的钢化玻璃。

计量机构主要由齿轮盒、叶轮盒、整体叶轮、顶尖、调节板等组成,见图2—3。计量机构是水表的“心脏”,它对水表的计量性能和耐用性起着关键的作用。

图2—3 旋翼式水表计量机构图。

1-齿轮盒:2-整体叶轮;3-叶轮盒;4-顶尖,5-调节板。

(1)齿轮盒。

计数器置于齿轮盒中,与齿轮盒上部的内孔相配合。齿轮盒下部有一凸台,与叶轮盒相配合。齿轮盒在旋翼多流水表的机芯中,起着承下启上的作用。

为此,要求齿轮盒上部内孔与下部凸台间应有良好的同轴度。另外,齿轮盒外壁应有定位线或底部有定位键,以保证与叶轮盒配合时的定位要求,从而确保性能的稳定。

旋翼式水表的齿轮盒底部一般均有三条左右的固定筋,其主要作用是,当水表在大流量运转时,对叶轮旋转起阻尼作用,以改善水表在大流量区域的性能曲线。因为当很小的流量通过水表时,其流速很低,水流的动能极小,不足以克服叶轮的惯性,故叶轮未转动。待稍加大流速,叶轮虽转动,但不能准确计量,故最小流量以下的流量范围水表呈偏慢的现象。

此后逐渐加大流速,水表向快的趋势发展,如果没有齿轮盒上的筋加以阻尼,则这种趋势将会持续下去,直至偏快10%~15%左右后(与有筋阻尼相比较),其性能曲线才会趋向平稳。

水流从叶轮盒进水孔流人后,一方面驱动叶轮旋转,另一方面水流本身呈螺旋形上升,并从叶轮盒出水孔排出。在小流量时,因水流流速低,叶轮上平面与齿轮盒筋的间隙处的水流呈层流状态,水的粘性作用占主要地位,齿轮盒上的筋对叶轮转速无影响。当流速大到一定程度时(一般为0.

7m/s左右),间隙处水流从层流过渡到湍流,造成齿轮盒若干条筋的下方产生旋涡,使叶轮转速有所减低。同时,因流速增大,在叶轮盒内呈螺旋上升的水流,有一部分冲到齿轮盒筋反射回来,其方向却与叶轮旋转方向相反,故又使叶轮转速降低,使水表不致于出现没有齿轮盒筋那样快10%~15%后才使误差趋向平稳的现象。变化示意见图2—4。

图2—4 齿轮筋对性能曲线的影响。

齿轮盒底部装有三块可任意调节角度的调节板,其作用是通过调整调节板角度,以改变水流从调节板反射回来时反作用力的大小,即改变水流对叶轮转速阻尼力的大小,达到调节大流量区域误差的目的。这种调节对小流量区域影响不大。

2)叶轮盒。

叶轮盒是计量机构中最关键的部件。叶轮盒上部内孔与齿轮盒**肩相配合。在叶轮盒低部中心一般有一螺孔,与顶尖相配合。

但有些水表不用螺纹配合,而采取过盈配合,将顶尖用力压人。叶轮盒上部内孔与顶尖应具有良好的同轴度。

在叶轮盒四周有两排斜孔,下排为进水孔,上排为出水孔,前者比后者对水表计量特性与压力损失的影响,更为至关重要。进水孔一般在叶轮盒注塑时一次成型为矩形孔或长方孔。进水孔可以均匀分布于叶轮盒的四周,也可在叶轮盒四周呈对称排列。

叶轮盒底部有若干条筋(一般为3条或6条),与齿轮盒上的筋作用相仿,主要是对水表在小流量区域运转时,使水流对叶轮转速产生阻尼。因此,调整叶轮下平面与叶轮盒筋之间的间隙,将会对小流量区域的示值误差产生影响。同时,当用水设备一旦关闭,水流不再流经水表时,由于筋的阻尼作用,能较快地克服叶轮的惯性,使其迅速停止转动,达到准确计量的目的。

对于内部调节式水表而言,在叶轮盒底部有若干个调节孔,如lxs-15c~20c水表的叶轮盒底部,均布有三排、每排二只的调节孔。调节孔有斜孔和直孔两种,如两者截面积相同,则后者比前者具有更大的调节功能,同时,在误差调节时,直孔比斜孔显得更敏感,在微量调节时比较难掌握。

3)叶轮。无论是整体叶轮,或是组合叶轮,均要求叶轮上端的轴与下部的叶轮衬套孔(甚至玛瑙轴承窝)之间,应有良好的同轴度。

旋翼式水表所用的叶轮的形状为直板形。叶轮受到水流冲击后旋转,与叶轮轴和轴上的中心齿轮同时转动。

对于大多数水表来说,在常用流量时,水表叶轮的转速,一般在750—900r/min。所以希望叶轮具有较好的动平衡性能,以减少运动副之间的磨损,提高水表使用寿命。

4)顶尖。顶尖安装在叶轮盒底部的中心,在叶轮轴的下部,用于支撑叶轮转动。顶尖的最上尖部与叶轮轴的下端凹轴承直接形成点滑动接触,以便使叶轮转动更加灵敏。

除了顶尖头、轴与螺纹间应具有良好的同轴度外,顶尖头的材质应具有很高的耐磨性能,一般以特殊配方的硬质橡胶棒、聚甲醛等材料较佳。值得注意的是,不能片面追求水表的灵敏度(始动流量值)而将顶尖头做成很尖。否则,经短时间使用,顶尖头即会磨损,使水表出现大流量区域变快、最小流量时变慢的情况。

这是因为在上述两种流量下,叶轮旋转时呈下沉状态,即叶轮玛瑙轴承与顶尖头相接触,叶轮上平面与齿轮盒筋的间隙增大,水流对叶轮转速的阻尼减小,水表在大流量区域变快。而小流量时,叶轮下平面与叶轮盒筋的间隙减小,水流对叶轮转速的阻尼增大。同时,顶尖头的磨损,使叶轮与顶尖的磨擦阻力增大,在两者的共同作用下,即造成水表在最小流量时变慢和始动流量值增大。

如果顶尖头严重磨损,即使在大流量情况下,其磨擦阻力的影响会达到或超过水流对叶轮转速阻尼减小的影响,水表在大流量时的误差又会恢复到准确或变慢。

计数机构常称为计数器,常见的形式有指针式、字轮式和指针字轮组合式。

(1)指针式计数机构。

指针式计数机构一般由上夹板、下夹板、托板、齿轮级、标度盘、指针、圆指针及螺钉等组成。

a.上夹板、下夹板。

夹板、下夹板和托板三者(有些产品将下夹板和托板合二为一)组成齿轮架,齿轮组被夹持在其中。上、下夹板上相对应序号的轴孔投影,应分别重合。齿轮在齿轮架中的上、下窜量应保持在0.6—0.8mm之间,若窜量过小,当上夹板一旦变形下凸时就会将齿轮上、下夹紧,齿轮组传动阻力就增大,水表的始动流量和最小流量下的误差就达不到要求。

上夹板下面中心有一凸台,其中有一孔与叶轮上端的光轴组成运动副。上夹板中心孔与其外圆(与齿轮盒配合处)要求具有良好的同轴度。

b.齿轮齿轮组起着变速和计数作用。公称口径15~50mm水表的齿轮组,均由17只齿轮组成。公称口径80~150mm旋翼式水表的齿轮组由18个齿轮组成。

图2-5为lxs-15c~25c水表的齿轮排列图。如图所示,叶轮轴上的中心齿轮与第一位齿轮相啮合,齿轮组将叶轮转数记录下来,通过指针在度盘上指示出流经水表的水量。齿轮组的前三位齿轮为变速齿轮,起变速作用。

自第三位(即第一位红针的)齿轮的主动轮(即小齿)起,直到末位齿轮止,起计数作用,称为计数齿轮,其相邻的两指针的齿轮间,其速比均为10:1,由此构成连续十进位方式。

齿轮排列展开图。

图2-5 lxs-15c~25c水表的齿轮排列图和标度盘。

1-螺钉;2-圆指针;3-指针;4~10-齿轮;11-标度盘;12-上夹板;13-下夹板;14-托板;15-螺钉。

不同规格的水表,在通过等量水体积的情况下,其叶轮与第一位指针的转数比是不同的。变速齿轮的作用是通过其主、被动轮的齿数变化,取得不同的速成比而满足不同规格水表的需要,从而可最大限度地提高上、下夹板、度盘等零部件的通用化程度。

习惯上将水表第一位红指针转一圈与其叶轮的转数之比,称为该水表的减速比i。这一减速比为主动轮齿数与被动轮齿数之比。lxs-15c,20c,25c,40c的i值分别为1:

29.6,1:22.5,1:15.577,1:

35.38,lxs-80。100,150的i值分别为:24.716。

从这些减速比值,可计算出各种规格水表在各种流量下的叶轮转速。例如,要计算lxs一15c水表在常用流量(1.5m3/h)下的叶轮每分钟转速时,可按下式计算:

同理,可得到lxs一20c,25c,40c规格的水表在常用流量下的叶轮转速为937.5,908.7和589.67r/rain。

c.标度盘。

标度盘的分格,一要满足检定时的分辨率要求,二要满足在水表正常的使用年限内水表的显示数不返回零。

1m3及其倍数的指针和度盘用黑色,1m3以下的用红色。

规程jjgl62—1985和标准gb/t778—1996规定:水表最小分度值(水表标准称为检定。

分格值)应满足检定时的准确度不低于o.5%(每一次读数允许有不超过1/2最小分度值的允许读数误差),以及最小流量检定所需时间不应超过1h30min;应能在不越过零的情况下记录下相当于在常用流量下工作至少1999h的以立方米表示的用水量体积。

说明:国际建议oimlr49一l:2000(e)

中的表述为“检定标尺的分格值,应足够小以保证指示装置的分辨率误差不大于最小流量ql下运行lh30min的实际体积的0.5%(对2级表)”,这样的表述更准确。

钳形表的结构和原理

钳形表实质上是由一只电流互感器 钳形扳手和一只整流式磁电系有反作用力仪表所组成。钳型表的工作原理和变压器一样。初级线圈就是穿过钳型铁芯的导线,相当于1匝的变压器的一次线圈,这是一个升压变压器。二次线圈和测量用的电流表构成二次回路。当导线有交流电流通过时,就是这一匝线圈产生了交变磁场,在二次回路中产生...

开关结构和工作原理

开关由主体和智能控制器两部分组成 主体采用电磁系统作为操作机构,驱动触头运动以实现对主电路的接通或分断 智能控制器采用电力电子技术控制开关的运动特性,采用脉冲消磁技术提高开关的分闸速度。智能控制器对主电路电流和线圈供电电压进行检测,根据主电路电流变化情况进行故障诊断,推算绕组温升,一旦发生故障,发出...

《可控硅的结构和工作原理》说课稿

可控硅的结构和工作原理 说课稿。吴志钢。课题 电子技术基础第七章第一节可控硅的结构和工作原理。一 教材简介。我选用的教材是教育部规划的中等职业学校电子电器专业教材 电子技术基础 p130 133。内容是 可控硅的结构和工作原理 可控硅又叫晶闸管,是电子技术中弱电控制强电的一种重要的基本元器件,是工业...

硬盘内部硬件结构和工作原理

一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标 型号 序列号 生产日期 容量 参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。硬盘主要由盘体 控制电路板和接口部件等组成,如图 1 1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构 控制...

计算机的基本结构和工作原理教案

课题 计算机的基本结构和工作原理。课型 新授。授课时间 2015年8月31日 9月4日。教学目标 知识与能力 掌握计算机的组成,理解计算机系统中信息的表示,了解计算机的基本工作原理。过程和方法 向学生展示拆卸的旧电脑部件及未装任何系统的电脑,通过实际观察加教师讲授的方法完成本节内容。情感态度和价值观...

变压器基本工作原理和结构

第一章变压器基本工作原理和结构。1 1从物理意义上说明变压器为什么能变压,而不能变频率?答 变压器原副绕组套在同一个铁芯上,原边接上电源后,流过激磁电流i0,产生励磁磁动势f0,在铁芯中产生交变主磁通 0,其频率与电源电压的频率相同,根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 ...

led的结构原理

一 什么是白光led 对于普通照明而言,人们需要的主要是白色的光源。1998年发白光的led开发成功。这种led是将gan芯片和钇铝石榴石 yag 封装在一起做成。gan芯片发蓝光 p 465nm,wd 30nm 高温烧结制成的含ce3 的yag荧光粉受此蓝光激发后发出黄色光,峰值550nm。蓝光l...

静态电压继电器的结构和与原理

静态电压继电器分为凸出式固定结构,凸出式插拔式结构,嵌入式插拔结构,导轨式结构等,并有透明的塑料外罩 导轨式为全封闭式 用薄码进行整定。本继电器为静态型继电器,采用进口集成电路构成 被测量的交流电压 u 经隔离变压器降压后得到与被测电压成正比的电压ui,经整定后进行整流,整流后脉冲电压经滤波器滤波,...