变压器基本工作原理和结构

发布 2019-06-18 20:02:55 阅读 1345

第一章变压器基本工作原理和结构。

1-1从物理意义上说明变压器为什么能变压,而不能变频率?

答:变压器原副绕组套在同一个铁芯上, 原边接上电源后,流过激磁电流i0, 产生励磁磁动势f0, 在铁芯中产生交变主磁通ф0, 其频率与电源电压的频率相同, 根据电磁感应定律,原副边因交链该磁通而分别产生同频率的感应电动势 e1和e2, 且有 , 显然,由于原副边匝数不等, 即n1≠n2,原副边的感应电动势也就不等, 即e1≠e2, 而绕组的电压近似等于绕组电动势,即u1≈e1, u2≈e2,故原副边电压不等,即u1≠u2, 但频率相等。

1-2 试从物理意义上分析,若减少变压器一次侧线圈匝数(二次线圈匝数不变)二次线圈的电压将如何变化?

答:由, ,可知 , 所以变压器原、副两边每匝感应电动势相等。又u1 e1, u2≈e2 , 因此,, 当u1 不变时,若n1减少, 则每匝电压增大,所以将增大。

或者根据,若 n1 减小,则增大, 又,故u2增大。

1-3 变压器一次线圈若接在直流电源上,二次线圈会有稳定直流电压吗?为什么?

答:不会。因为接直流电源,稳定的直流电流在铁心中产生恒定不变的磁通,其变化率为零,不会在绕组中产生感应电动势。

1-4 变压器铁芯的作用是什么,为什么它要用0.35毫米厚、表面涂有绝缘漆的硅钢片迭成?

答:变压器的铁心构成变压器的磁路,同时又起着器身的骨架作用。为了铁心损耗,采用0.35mm厚、表面涂的绝缘漆的硅钢片迭成。

1-5变压器有哪些主要部件,它们的主要作用是什么?

答:铁心: 构成变压器的磁路,同时又起着器身的骨架作用。

绕组: 构成变压器的电路,它是变压器输入和输出电能的电气回路。

分接开关: 变压器为了调压而在高压绕组引出分接头,分接开关用以切换分接头,从而实现变压器调压。

油箱和冷却装置: 油箱容纳器身,盛变压器油,兼有散热冷却作用。

绝缘套管: 变压器绕组引线需借助于绝缘套管与外电路连接,使带电的绕组引线与接地的油箱绝缘。

1-6变压器原、副方和额定电压的含义是什么?

答:变压器二次额定电压u1n是指规定加到一次侧的电压,二次额定电压u2n是指变压器一次侧加额定电压,二次侧空载时的端电压。

1-7 有一台d-50/10单相变压器,,试求变压器原、副线圈的额定电流?

解:一次绕组的额定电流

二次绕组的额定电流

1-8 有一台ssp-125000/220三相电力变压器,yn,d接线,,求①变压器额定电压和额定电流;②变压器原、副线圈的额定电流和额定电流。

解:①.一、二次侧额定电压

一次侧额定电流(线电流)

二次侧额定电流(线电流)

2 ② 由于yn,d接线。

一次绕组的额定电压 u1nф=

一次绕组的额定电流。

二次绕组的额定电压。

二次绕组的额定电流i2nф=

第二章单相变压器运行原理及特性。

2-1 为什么要把变压器的磁通分成主磁通和漏磁通?它们之间有哪些主要区别?并指出空载和负载时激励各磁通的磁动势?

答:由于磁通所经路径不同,把磁通分成主磁通和漏磁通,便于分别考虑它们各自的特性,从而把非线性问题和线性问题分别予以处理。

区别:1. 在路径上,主磁通经过铁心磁路闭合,而漏磁通经过非铁磁性物质磁路闭合。

2.在数量上,主磁通约占总磁通的99%以上,而漏磁通却不足1%。

3.在性质上,主磁通磁路饱和,φ0与i0呈非线性关系,而漏磁通磁路不饱和,φ1σ与i1呈线性关系。

4.在作用上,主磁通在二次绕组感应电动势,接上负载就有电能输出起传递能量的媒介作用,而漏磁通仅在本绕组感应电动势,只起了漏抗压降的作用。

空载时,有主磁通和一次绕组漏磁通,它们均由一次侧磁动势激励。

负载时有主磁通,一次绕组漏磁通,二次绕组漏磁通。主磁通由一次绕组和二次绕组的合成磁动势即激励,一次绕组漏磁通由一次绕组磁动势激励,二次绕组漏磁通由二次绕组磁动势激励 .

2-2变压器的空载电流的性质和作用如何?它与哪些因素有关?

答:作用:变压器空载电流的绝大部分用来供励磁,即产生主磁通,另有很小一部分用来供给变压器铁心损耗,前者属无功性质,称为空载电流的无功分量,后者属有功性质,称为空载电流的有功分量。

性质:由于变压器空载电流的无功分量总是远远大于有功分量,故空载电流属感性无功性质,它使电网的功率因数降低,输送有功功率减小。

大小:由磁路欧姆定律,和磁化曲线可知,i0 的大小与主磁通φ0, 绕组匝数n及磁路磁阻有关。就变压器来说,根据,可知,, 因此,由电源电压u1的大小和频率f以及绕组匝数n1来决定。

根据磁阻表达式可知,与磁路结构尺寸有关,还与导磁材料的磁导率有关。变压器铁芯是铁磁材料,随磁路饱和程度的增加而减小,因此随磁路饱和程度的增加而增大。

综上,变压器空载电流的大小与电源电压的大小和频率,绕组匝数,铁心尺寸及磁路的饱和程度有关。

2-3 变压器空载运行时,是否要从电网取得功率?这些功率属于什么性质?起什么作用?为什么小负荷用户使用大容量变压器无论对电网和用户均不利?

答:要从电网取得功率,供给变压器本身功率损耗,它转化成热能散逸到周围介质中。小负荷用户使用大容量变压器时,在经济技术两方面都不合理。

对电网来说,由于变压器容量大,励磁电流较大,而负荷小,电流负载分量小,使电网功率因数降低,输送有功功率能力下降,对用户来说,投资增大,空载损耗也较大,变压器效率低。

2-4 为了得到正弦形的感应电动势,当铁芯饱和和不饱和时,空载电流各呈什么波形,为什么?

答:铁心不饱和时,空载电流、电动势和主磁通均成正比,若想得到正弦波电动势,空载电流应为正弦波;铁心饱和时,空载电流与主磁通成非线性关系(见磁化曲线),电动势和主磁通成正比关系,若想得到正弦波电动势,空载电流应为尖顶波。

2-5 一台220/110伏的单相变压器,试分析当高压侧加额定电压220伏时,空载电流i0呈什么波形?加110伏时载电流i0呈什么波形,若把110伏加在低压侧,i0又呈什么波形。

答:变压器设计时,工作磁密选择在磁化曲线的膝点(从不饱和状态进入饱和状态的拐点),也就是说,变压器在额定电压下工作时,磁路是较为饱和的。

高压侧加220v ,磁密为设计值,磁路饱和,根据磁化曲线,当磁路饱和时,励磁电流增加的幅度比磁通大,所以空载电流呈尖顶波。

高压侧加110v ,磁密小,低于设计值,磁路不饱和,根据磁化曲线,当磁路不饱和时,励磁电流与磁通几乎成正比,所以空载电流呈正弦波。

低压侧加110v ,与高压侧加220v相同, 磁密为设计值, 磁路饱和,空载电流呈尖顶波。

2-6 试述变压器激磁电抗和漏抗的物理意义。它们分别对应什么磁通,对已制成的变压器,它们是否是常数?当电源电压降到额定值的一半时,它们如何变化?

我们希望这两个电抗大好还是小好,为什么?这两个电抗谁大谁小,为什么?

答:励磁电抗对应于主磁通,漏电抗对应于漏磁通,对于制成的变压器,励磁电抗不是常数,它随磁路的饱和程度而变化,漏电抗在频率一定时是常数。

电源电压降至额定值一半时,根据可知,,于是主磁通减小,磁路饱和程度降低,磁导率μ增大,磁阻减小, 导致电感增大,励磁电抗也增大。但是漏磁通路径是线性磁路, 磁导率是常数,因此漏电抗不变。

由可知,励磁电抗越大越好,从而可降低空载电流。漏电抗则要根据变压器不同的使用场合来考虑。对于送电变压器,为了限制短路电流和短路时的电磁力,保证设备安全,希望漏电抗较大;对于配电变压器,为了降低电压变化率:

,减小电压波动,保证供电质量,希望漏电抗较小。

励磁电抗对应铁心磁路,其磁导率远远大于漏磁路的磁导率,因此,励磁电抗远大于漏电抗。

2—7 变压器空载运行时,原线圈加额定电压,这时原线圈电阻r1很小,为什么空载电流i0不大?如将它接在同电压(仍为额定值)的直流电源上,会如何?

答: 因为存在感应电动势e1, 根据电动势方程:

可知,尽管很小,但由于励磁阻抗很大,所以不大。如果接直流电源,由于磁通恒定不变,绕组中不感应电动势,即,,因此电压全部降在电阻上,即有,因为很小,所以电流很大。

2—8 一台380/220伏的单相变压器,如不慎将380伏加在二次线圈上,会产生什么现象?

答: 根据可知,,由于电压增高,主磁通将增大,磁密将增大, 磁路过于饱和,根据磁化曲线的饱和特性,磁导率μ降低,磁阻增大。于是,根据磁路欧姆定律可知,产生该磁通的励磁电流必显著增大。

再由铁耗可知,由于磁密增大,导致铁耗增大,铜损耗也显著增大,变压器发热严重, 可能损坏变压器。

2—9一台220/110伏的变压器,变比,能否一次线圈用2匝,二次线圈用1匝,为什么?

答:不能。由可知,由于匝数太少,主磁通将剧增,磁密过大,磁路过于饱和,磁导率μ降低,磁阻增大。

于是,根据磁路欧姆定律可知, 产生该磁通的激磁电流必将大增。再由可知,磁密过大, 导致铁耗大增, 铜损耗也显著增大,变压器发热严重,可能损坏变压器。

2-10 2-10 变压器制造时:①迭片松散,片数不足;②接缝增大;③片间绝缘损伤,部对变压器性能有何影响?

答:(1)这种情况相当于铁心截面s减小,根据可知知,,因此,电源电压不变,磁通将不变,但磁密,减小,将增大,铁心饱和程度增加,磁导率减小。因为磁阻,所以磁阻增大。

根据磁路欧姆定律,当线圈匝数不变时,励磁电流将增大。又由于铁心损耗,所以铁心损耗增加。

(2)这种情况相当于磁路上增加气隙,磁导率下降,从而使磁阻增大。 根据可知,,故不变,磁密也不变,铁心饱和程度不变。又由于,故铁损耗不变。

根据磁路欧姆定律可知,磁动势将增大,当线圈匝数不变时,励磁电流将增大。

变压器的工作原理

变压器产品系列是以高压的电压等级而分的,现在电力变压器的系列分为10kv及以下系列,35kv系列,63kv系列,110kv系列和220kv系列等。额定电压是指线电压,且均以有效值表示。2 额定容量。变压器的主要作用是传输电能,因此,额定容量是它的主要参数。额定容量是一个表现功率的惯用值,它是表征传输...

变压器的基本知识

一基本知识。一 变压器的用途。变压器是借助于电磁感应 以相同的频率,在两个或更多的绕组之间,变换交流电压和电流而传输交流电能的一种静止电器。变压器的用途很广,在国民经济的各部门,都十分广泛应用着各种各样的变压器。从电力系统角度而言,一个电力网将许多发电厂和用户联在一起。从发电厂发出的电能往往需经远距...

变压器的结构原理 用途分类及负荷能力

一 变压器的基本结构 1 油浸变压器的结构 变压器组成部件包括器身 铁芯 绕组 绝缘 引线 变压器油 油箱和冷却装置 调压装置 保护装置 吸湿器 安全气道 气体继电器 储油柜及测温装置等 和出线套管,见图 变压器结构图 1一高压套管 2一分接开关 3一低压套管 4一气体继电器 5一安全气道 防爆管 ...

变压器保护原理及试验方法

参加人员。培训日期 2010年3月2日。1 变压器保护的配置。1.1 主保护。变压器是变电站的电气主设备,其内部故障的主保护方案之一是差动保护。差动保护在发电机和线路上的应用是比较简单的,但作为变压器内部故障的主保护,差动保护有许多特点和困难。第一,由于变压器每相原 副边电流大小和相位不同而产生的不...

变压器的区别

答 干式变压器的绝缘介质是树脂或纸和绝缘漆,冷却方式有自冷和风冷,优点是免维护,缺点是容量受到限制。油浸式的绕组是浸在变压器油中的,绝缘介质就是油,冷却方式有自冷 风冷和强迫油循环冷却,其优点是冷却效果好,可以满足大容量,瓦斯继电器可以及时反映出绕组的故障,保证系统的稳定运行,不足之处是得经常巡视,...

反激式变压器开关电源工作原理

所谓反激式变压器开关电源,是指当变压器的初级线圈正好被直流脉冲电压激励时,变压器的次级线圈没有向负载提供功率输出,而仅在变压器初级线圈的激励电压被关断后才向负载提供功率输出,这种变压器开关电源称为反激式开关电源。图1 19 a是反激式变压器开关电源的简单工作原理图,图1 19 a中,ui是开关电源的...

变压器的用途与分类

变压器是变控电源电压的一种电气设备,为适应不同的使用目的和工作条件,变压器的类型很多,通常安变压器的不同用途 不同容量 绕组个数 相数 调压方式 冷却介质 冷却方式 铁心形式等等进行分类,以满足不同行业对变压器的需求。按用途分类。电力变压器。电炉变压器。整流变压器。工频试验变压器。矿用变压器。电抗器...

变压器的各类中性点接地知识

1 变压器停送电操作时,其中性点为什么一定要接地?答 这主要是为防止过电压损坏被投退变压器而采取的一种措施。对一侧有电源的受电变压器,当其断路器非全相断 合时,若其中性点不接地有以下危险 1 变压器电源侧中性对地电压最大可达相电压,这可能损坏变压器绝缘。2 当变压器高 低压绕组之间有电容,这种电容会...